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Abstract:	In	this	paper,	we	highlight	one	whole‐class	discussion	that	took	place	in	a	middle	
school	mathematics	Rational	Number	and	Proportional	Reasoning	course,	one	of	the	six	
mathematics	courses	teachers	take	to	complete	our	state‐wide	middle	school	mathematics	
specialist	program.		Statistical	measures	indicate	that	teachers	made	gains	in	their	
understanding	of	concepts	and	substantial	gains	in	their	views	of	teaching	and	
preparedness.		We	provide	a	microanalysis	of	one	of	the	lessons,	to	explain,	in	part,	how	
they	might	have	made	this	progress.		To	develop	our	argument,	we	coordinate	a	social	
analysis	with	an	analysis	of	the	types	of	specialized	mathematical	knowledge	that	teachers	
might	have	considered	as	they	engaged	in	these	discussions.		As	we	will	illustrate,	these	
types	of	classroom	discussions	provided	teachers	opportunities	to	consider	new	visions	for	
mathematics	learning	and	teaching.	
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Professional	development	initiatives	that	provide	continuing,	quality	support	for	

middle	school	teachers	have	received	renewed	attention	in	recent	years.		For	instance,	

Smith,	Silver	and	Stein	(2005)	stated	that	due	to	students’	“lower‐than‐expected	

performance	on	national	and	international	assessments”	(p.	xi)	the	National	Science	

Foundation	provided	financial	support	for	developers	to	create	new	middle	school	

mathematics	curricula	(e.g.,	MathScape,	Connected	Mathematics	Project	&	Mathematics	in	

Context).	that	offered	new	innovations	in	teaching	and	learning	mathematics	(Reys,	Reys	&	
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Chávez,	2004).			Providing	new	curricula	and	professional	development	around	

implementing	these	curricula	can	be	catalysts	for	teachers	to	further	develop	(or	change)	

practices,	make	connections	among	ideas,	and	better	support	student	learning	(Reys,	et	al.,	

2004).			However,	if	teachers	do	not	develop	new	kinds	of	practices	they	may	not	be	able	to	

successfully	implement	innovative	curricula.		As	Smith,	Silver	and	Stein	(2005)	state	with	

regard	to	implementing	new	middle	school	curricula,		

In	short,	new	curriculum	materials	are	unlikely	to	have	the	desired	impact	on	

student	learning	unless	classroom	instruction	shifts	from	its	current	focus	on	

routine	skills	and	instead	focuses	on	developing	student	understanding	of	important	

mathematics	concepts	and	proficiency	in	solving	complex	problems.		(p.	xi	)	

Schifter	and	Lester	(2005)	mirror	Smith	et	al.’s	(2005)	position.		Speaking	about	teachers’	

participation	in	the	Developing	Mathematical	Ideas	programs,	they	state	that	if	teachers	do	

not	“construct	new	visions	for	mathematics,	mathematics	learning	and	the	mathematics	

classroom”	(Schifter	&	Lester,	p.	97),	instructors	will	not	be	able	to	implement	these	

curricula	in	ways	that	the	developers	intend.			

Schifter	and	Lester’s	(2005)	position	is	a	useful	way	to	frame	our	work	in	our	

statewide	mathematics	specialist	program	for	middle	school	teachers.		One	of	the	aims	of	

this	work	is	to	help	teachers,	when	needed,	to	make	shifts	in	their	instructional	practices	so	

that	they	can	effectively	serve	as	mathematics	teacher	leaders,	who	we	refer	to	as	

mathematics	specialists.		Our	goal	is	to	prepare	middle	school	teachers	such	that	once	they	

successfully	complete	this	program,	they	will	be	well	positioned	to	provide	ongoing,	long‐

term,	classroom‐based	professional	development	for	fellow	teachers	in	their	school	

buildings.			
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Throughout	the	program,	we	know	that	the	course	instructors	played	a	key	role	in	

helping	teachers	reflect	more	deeply	about	different	aspects	of	their	work	(cf.	Ball,	Thames	

&	Phelps,	2008).		For	instance,	teachers	reported	that	course	instructors	played	a	key	role	

in	helping	them	develop	deeper	understandings	in	the	first	two	courses	(Numbers	&	

Operations;	Rational	Numbers	and	Proportional	Reasoning)	(Moffet,	Fitzgerald	&	Smith,	

2011).		Additionally,	teachers	made	statistically	significant	gains	in	their	understanding	of	

mathematics	content	as	well	as	how	to	better	teach	these	content	ideas	(p	<	0.05)	(Moffet	

et	al.,	2011).		Also,	they	made	substantial	gains	in	their	perceptions	of	their	understanding	

of	content	and	teacher	preparedness.		These	findings	have	prompted	us	to	ask	the	

following	questions:	What	happened	during	the	courses	that	may	have	provided	

opportunities	for	teachers	to	make	these	kinds	of	shifts?		What	was	the	nature	of	

instruction	that	allowed	these	changes	to	occur?		How	might	we	better	understand	the	

instructors’	role	in	supporting	the	teachers’	understandings	of	content	and	their	

perceptions	of	themselves	as	teachers	of	mathematics?		What	mathematical	ideas	for	

teaching	might	teachers	consider	as	they	engage	in	these	discussions?		The	purpose	of	this	

paper	is	to	unpack	one	of	the	lessons	in	the	Rational	Numbers	and	Proportional	Reasoning	

course	to	understand	the	process	by	which	teachers	may	have	made	these	shifts	in	their	

understandings.		We	are	particularly	interested	if	we	can	identify	instances	during	the	

lesson	in	which	teachers	had	opportunities	to	consider	alternative	ways	to	reason	about	

pedagogical	and	mathematical	ideas.		If	we	can	identify	such	instances,	we	may	gain	insight	

into	what	and	how	they	may	have	made	these	possible	shifts	in	their	perceptions	and	

understandings	of	teaching	and	content.		
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To	accomplish	this	task,	we	provide	a	microanalysis	of	one	of	the	lessons	in	which	

the	participants	explored	inverse	proportions.		We	chose	this	lesson	because	it	illustrates	

how	the	instructors	and	teachers	established	collective	ways	to	reason	about	proportion	

problems	and,	as	they	did	so,	created	opportunities	for	teachers	to	explore	their	beliefs	

about	and	commitments	to	teaching	and	learning	mathematics	for	understanding	(Shifter	&	

Lester,	2005).		Additionally,	our	example	illustrates	the	some	of	the	challenges	that	

instructors	encounter	as	they	attempt	to	address	teachers’	more	traditional	views	of	

mathematics	teaching	by	engaging	them	in	more	innovative	practices.			

In	the	next	sections,	we	first	briefly	outline	our	research	efforts.		Following	this	

discussion,	we	highlight	constructs	that	are	informing	our	research	about	teachers	and	

their	work	as	mathematics	specialists—the	mathematical	knowledge	that	they	need	to	

know	to	do	this	work	(Ball,	Thames	&	Phelps,	2008).		We	then	analyze	the	lesson	to	

understand	the	reasons	behind	the	progress	made	by	the	teachers	during	the	course.		

Finally	we	offer	some	comments	about	the	importance	of	engaging	teachers	in	these	types	

of	learning	experiences.	

Methodology	Issues	

In	this	section	we	outline	the	methods	we	used	to	analysis	the	classroom	episode.		

Before	doing	so,	we	provide	background	about	the	mathematics	specialist	program.	

Mathematics	Specialist	Program	

The	mathematics	specialist	program	is	the	result	of	a	concerted	effort	for	over	20	

years	among	stakeholders	(university	faculty,	school	district	personnel,	state	professional	

organizations	and	the	State	Department	of	Education)	to	provide	endorsement	programs	
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for	K‐8	mathematics	specialists.		Mathematics	specialists	are	thought	to	have	a	particular	

set	of	responsibilities	in	their	school	buildings:			

1. Support	teachers	through	coaching,	co‐teaching,	and	modeling	lessons,	
2. Translate	mathematics	standards	and	research	into	classroom	practice,	
3. Plan	and	facilitate	in‐school	practice‐based	professional	development,	and		
4. Work	collaboratively	with	administrators	and	staff	to	improve	student	learning.		

	
																					(Virginia	Mathematics	&	Science	Coalition,	n.d.)	

There	has	been	a	growing	interest	in	supporting	mathematics	specialists,	coaches	or	

instructional	leaders	in	many	different	states.		For	instance,	states	across	the	country	have	

received	federal	support	to	implement	and	determine	the	effectiveness	of	mathematics	

teacher	leader	programs	(e.g.,	Nebraska’s	Math	in	the	Middle	Institute	Partnership,	

Virginia’s	Preparing	Virginia	Mathematics	Specialists,	and	Oregon’s	Oregon	Mathematics	

Leadership	Institute).		These	and	other	programs	were	developed	in	part	because	of	the	

need	to	provide	extensive,	on‐the‐job	professional	development	for	teachers	of	

mathematics.			

At	the	same	time,	several	professional	documents	have	called	for	qualified	

mathematics	specialists	to	be	placed	in	schools	as	a	resource	for	improving	instruction	

(e.g.,	Kilpatrick,	Swafford	&	Findell,	2001;	National	Council	of	Teachers	of	Mathematics	

(NCTM),	2000;	National	Mathematics	Advisory	Panel,	2008;	National	Council	of	

Supervisors	of	Mathematics	(NCSM),	2008).		The	NCSM	(2008)	report	is	particularly	timely	

in	that	it	provides	a	framework	for	the	content	that	mathematics	teacher	leaders	might	

need	to	successfully	support	teachers’	daily	work.			

In	our	program,	teachers	are	slated	to	work	as	mathematics	specialists	in	their	

districts	after	they	successfully	complete	a	multi‐year,	36‐39	credits,	Masters	degree	

program	in	mathematics	and	mathematics	education	leadership.		The	program	is	composed	
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of	three	5‐week	summer	institutes	that	include	six	mathematics	courses:	Numbers	and	

Operations,	Algebra	and	Functions,	Algebra	and	Functions	2,	Statistics	and	Probability,	

Rational	Numbers	and	Proportional	Reasoning,	and	Geometry	and	Measurement.		

Additionally,	each	year,	teachers	enroll	in	one	Education	Leadership	course.		They	also	

complete	a	research	in	mathematics	education	course	that	follows	a	blended	delivery	

format.			

Instructors	used	activities	from	different	sources	to	address	content	in	the	

mathematics	courses.		For	instance,	they	adapted	many	of	the	activities	in	the	Rational	

Numbers	and	Proportional	Reasoning	from	the	work	of	Smith,	Stein	and	Silver	(2005)	and	

Lamon	(2005).		The	Education	Leadership	courses	were	designed	so	that	teachers	would	

explore	their	own	teaching,	their	role	as	a	math	coach	and	their	role	as	a	change	agent	in	

the	school	building	and	district.	In	the	Education	Leadership	1,	activities	addressed	

teaching	mathematics	for	understanding,	issues	that	align	with	reform	recommendations.		

For	instance,	teachers	examined	the	NCTM	(2000)	documents	and	Stein,	Smith,	

Henningsen,	and	Silver’s	(2000)	work	on	cognitively	demanding	tasks.		In	Education	

Leadership	II	&	III,	teachers	learned	about	coaching	and	working	as	a	mathematics	leader	

in	the	school	context,	respectively.		Additionally,	these	courses	were	not	taught	in	isolation,	

per	se.		When	possible,	instructors	planned	instruction	so	that	Education	Leadership	

activities	aligned	with	content	addressed	in	the	mathematics	courses.	

The	required	mathematics	courses	address	content	that	is	not	only	covered	in	the	

middle	school	curriculum,	but	also	content	that	requires	teachers	to	use	multiple	

representations,	analyze	the	work	of	students,	and	make	connections	between	procedures	

and	the	underlying	mathematical	ideas.	Thus,	teachers	have	a	range	of	experiences	that	
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align	with	recommendations	made	by	NCTM	(2000)	and	The	National	Mathematics	

Advisory	Panel	(2008).			

Throughout	the	program,	course	instructors	use	a	problem‐centered	approach	to	

teach	the	courses	(Yackel	&	Cobb,	1996).		Using	this	approach,	the	instructor	presents	one	

or	more	rich	problems	for	which	teachers	do	not	readily	know	the	answer.		Teachers	need	

to	use	their	understandings	to	make	sense	of	and	solve	these	problems.	They	usually	work	

in	pairs	or	small	groups	to	solve	the	problems	together.		The	key	is	for	them	to	understand	

the	strategies	that	they	use,	and,	when	possible,	to	understand	the	different	approaches	

that	other	classmates	use.		Additionally,	they	are	expected	to	share	their	methods	when	the	

class	reconvenes	for	a	whole	class	discussion.		During	these	discussions,	the	instructor	

plays	the	important	role	of	deciding	which	ideas	to	capitalize	on	and	which	to	place	on	

hold,	in	addition	to	which	representations	might	be	used	to	provide	teachers	opportunities	

to	explore	ideas	and	make	connections	(Yackel,	2002).	

Data	and	Analysis.	The	classroom	episodes	that	we	use	are	taken	from	our	

classroom	data	corpus	of	the	two	mathematics	courses	that	we	studied	(we	only	collected	

data	for	two	of	the	courses).		Data	include	observation	notes	of	the	lessons,	videotape	

recordings	of	small	group	and	whole	class	discussions,	digital	recordings	of	small	group	

discussions,	digital	photos	of	participants’	work	during	whole	class	discussions	and	

participants’	individual	work.		Additionally,	after	viewing	each	of	the	lessons,	we	

transcribed	lessons	to	conduct	further	microanalyses	of	the	entire	lesson.		As	we	reviewed	

our	observation	notes,	we	noted	that	teachers	continued	to	struggle	with	using	pictures,	

diagrams	or	manipulatives	to	illustrate	mathematical	ideas.		We	had	marked	this	particular	

lesson	as	a	potentially	pivotal	one.		Although	teachers	continued	to	have	various	views	on	if	
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they	might	be	able	to	represent	and	solve	problems	and,	if	so,	how	to	actually	do	it,	during	

this	lesson,	they	reasoned	sensibly	about	proportion	ideas	as	they	used	manipulatives	and	

diagrams.		For	this	reason,	we	believe	that	this	whole	class	discussion	was	particularly	

important.				

To	conduct	a	microanalysis,	we	engaged	in	a	process	that	is	similar	to	that	of	Glaser	

and	Strauss’	(1967)	constant	comparison	method.		We	first	viewed	the	videotape	as	we	

analyzed	the	transcript	of	the	whole	class	discussion.		As	we	watched	the	videotaped	

lesson,	we	identified	the	mathematical	ideas	that	surfaced	and	clarified	the	different	

models	that	participants	used	to	explain	solution	methods.		We	then	reanalyzed	the	

transcript	of	the	lesson,	line	by	line,	and	made	conjectures	(or	refuted	conjectures)	about	

how	representations	emerged	as	participants	engaged	in	the	conversation.		As	we	did	so,	

we	also	integrated	each	subsequent	participant’s	contribution	to	further	support	our	

conjectures	about	if	and	how	the	participants	used	these	representations	to	explain	and	

justify	their	thinking.		As	part	of	this	process,	we	made	inferences	about	the	participants’	

expectations	and	obligations	in	relation	to	their	interactions	with	others’	contributions.		

Through	this	process,	we	developed	a	more	general	theme	about	how	the	participants	

established	ways	to	reason	mathematically	using	multiple	representations.			

Theoretical	Issues	

Our	Assumptions	

We	view	classrooms	as	social	settings	in	which	teachers	and	their	students	together	

establish	a	classroom	community	(e.g.,	Ball	&	Bass,	2003;	Cobb	&	Yacel,	1996).		It	does	not	

matter	how	we	might	characterize	the	classroom	or	the	teachers’	and	their	students’	

established	ways	of	acting	and	participating	that	are	particular	to	that	community	or	
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classroom	microculture.		Together,	the	teacher	and	students	constitute	what	counts	as	

knowing	and	doing	mathematics.		When	individuals	in	a	social	setting,	such	as	in	

classrooms,	agree	on	ways	of	acting	and	participating,	we	refer	to	these	as	taken‐as‐shared	

practices		(e.g.,	Cobb	&	Yackel,	1996;	Simon	&	Blume	1996).		Ball	and	Bass	(2003)	refer	to	

this	notion	as	public	knowledge.		Classroom	practices	are	said	to	be	taken‐as‐shared	or	

public	if	and	only	if	they	are	normative,	that	is,	they	are	agreed	upon,	and	eventually	taken	

for	granted	by	the	classroom	participants.		As	such,	classroom	practices	are	social	

constructions	that	emerge	during	classroom	interactions.		This	is	not	to	say	that	individual	

contributions	do	not	play	an	important	role.		Different	individuals	may	participate	in	these	

practices	in	different	ways	given	their	understanding	of	the	ideas	at	hand	(Cobb	&	Yackel,	

1996;	Ball	&	Bass,	2003).	Although	practices	are	socially	accomplished,	individuals	

contribute	to	and	participate	in	these	practices	in	different	ways.		Further,	their	

understandings	constrain	and	enable	how	they	might	participate	in	particular	practices	

(e.g.,	Whitenack	&	Knipping,	2003)		

Background	

Teachers	had	opportunities	to	solve	a	range	of	tasks	that	were	likely	different	from	

those	that	they	used	in	their	own	classrooms	to	teach	proportional	reasoning.		Engaging	in	,	

what	for	them	were	novel	activities,	posed	challenges	for	many	of	the	teachers.		They	

seemed	to	address	these	challenges	in	different	ways.		For	instance,	some	teachers	

embraced	the	idea	of	using	manipulatives	to	solve	tasks	because	they	began	to	see	that	

their	students	might	benefit	from	using	manipulatives	or	diagrams.		Others,	who	had	

worked	in	elementary	as	well	as	middle	school	classrooms,	were	more	familiar	with	using	

manipulatives	to	reason	about	ideas	or	to	represent	their	thinking.		Still	others	had	little	
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experience	with	using	manipulatives	in	their	classrooms.		Additionally,	they	struggled	to	

use	different	representations	to	reason	about	and	to	solve	tasks.		So	teachers	had	varying	

experiences	(and	views)	about	using	manipulatives	and,	more	generally,	employing	

multiple	representations	to	reason	mathematically.		For	example,	in	the	lesson	we	examine	

below,	not	all	of	the	teachers	successfully	used	pattern	blocks	to	solve	the	inverse	

proportion	problem.	

Mathematical	Knowledge	for	Teaching	

We	draw	on	the	work	of	Ball	and	her	colleagues	(e.g.,	Ball,	Lubienski	&	Mewborn,	

2001;	Ball,	Hill	&	Bass,	2005;	Ball,	Thames	&	Phelps,	2008)	to	understand	the	kinds	of	

mathematical	knowledge	that	teachers	must	have	and	use	when	teaching	mathematics	for	

understanding.		As	Ball	(2002)	asserts,	mathematical	knowledge	for	teaching	[MKT]	is	not	

simply	a	list	of	mathematical	skills	or	content	that	is	learned	as	one	participates	in	

traditional	mathematics	courses.		It	is	a	specified	type	of	knowledge	teachers	must	have	to	

effectively	teach	mathematics.				

Ball,	Thames,	&	Phelps	(2008)	separate	MKT	into	two	domains	(1)	common	content	

knowledge	(CCK),	mathematical	content	and	skills	used	in	various	aspects	of	work	and	

everyday	life—not	just	in	the	classroom,	and	(2)	specialized	content	knowledge	(SCK),	

mathematical	content	and	skills	that	particularly	apply	to	the	teaching	profession.		

Teachers	need	to	draw	on	both	kinds	of	knowledge	in	their	work	with	students.		With	

regard	to	SCK,	teachers	need	to	understand	the	important	mathematical	concepts	that	are	

behind	a	particular	procedure	or	how	to	best	highlight	students’	drawings	to	focus	a	

discussion	related	to	those	ideas.		With	regard	to	CCK,	teachers	also	need	to	have	a	deep	

understanding	of	the	mathematics	that	they	teach.	
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What	content	knowledge	do	teachers	need	to	know	to	understand	proportional	

reasoning?		Lamon	(2005)	argues	that	to	reason	proportionally,	teachers	need	to	reason	

multiplicatively	about	the	relationships	among	two	or	more	ratios.		Consider,	for	instance,	a	

problem	from	Lamon’s	(2005,	p.	99)	text:		If	3	pizzas	serve	9	people,	how	many	pizzas	will	I	

need	to	serve	108	people?		To	solve	this	problem,	the	teacher	might	recognize	that	the	

number	of	people	will	always	be	three	times	the	number	of	pizzas.	So	108	pizzas	would	

feed	36	people—one‐third	of	the	number	of	pizzas.		Or	the	teacher	could	reason	that	since	

there	are	three	pizzas	for	nine	children,	there	are	30	pizzas	for	90	children	(there	are	10	

times	as	many	pizzas	and	children).		And	she	knows	that	33	pizzas	will	feed	99	children.	

She	then	adds	six	more	pizzas	and	18	more	children	to	arrive	at	the	answer	of	36	pizzas	for	

108	children.		Here	again	the	teacher	is	said	to	reason	proportionally	since	she	relates	

pizzas	and	children	multiplicatively	(Lamon).		Additionally,	one	can	explore	different	

relationships	among	ratios.		For	instance,	two	variable	quantities	can	relate	directly,	or	be	

directly	proportional,	if	their	ratio	is	constant.		Our	example	of	pizzas	and	people	above	is	

an	example	of	ratios	that	are	directly	proportional	since	each	is	equivalent	to	the	same	

constant,	⅓	(i.e.,	each	pizza	serves	three	people).		By	way	of	contrast,	two	variable	

quantities	are	inversely	proportional	if	their	product	is	constant.					

As	we	analyze	the	whole	class	discussion,	we	will	highlight	some	of	the	specialized	

content	knowledge	that	might	be	in	the	background	during	the	discussion.		We	do	so	to	

illustrate	how	closely	related	specialized	knowledge	for	teaching	(e.g.,	how	different	

manipuatives	exploit	different	aspects	of	proportional	reasoning)	and	the	teachers’	

solution	methods	are	in	this	particular	lesson.		Although	it	was	not	the	instructors’	intent	to	

address	specialisted	knowledge	for	teaching	explicitly	during	the	lesson,	these	ideas	can	
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naturally	surface	as	teachers	reflect	on	their	learning	experiences	in	relation	to	their	own	

teaching	practice.	

Using	Novel	Tasks	

One	of	the	challenges	that	the	instructors	had	was	to	help	teachers	understand	the	

ideas	that	underpin	the	procedures	they	routinely	use	to	solve	proportional	problems.		The	

instructor	might	use	one	of	several	approaches	to	meet	this	challenge.	He	might	ask	

teachers	to	explain	why	a	particular	procedure	works.		Or	he	might	ask	what	mathematical	

ideas	surface	as	teachers	use	these	procedures.		Or	the	instructor	might	pose	tasks	that	

require	teachers	to	use	different	representations	such	as	manipulatives,	diagrams,	or	

pictures,	to	model	and	solve	problems.		This	instructional	strategy,	using	models	to	solve	

problems,	seemed	to	be	an	effective	way	to	challenge	teachers’	understanding	and	beliefs	

about	teaching	for	understanding.		By	requiring	teachers	to	reason	about	ideas	using	

different	models,	teachers	had	opportunities	to	explore	the	important	ideas	that	underpin	

the	methods	that	they	used.		Teachers	did	not	have	ways	to	readily	solve	tasks	using	these	

representations—these	problems	were	novel	ones	for	teachers.		In	the	lesson	that	we	

analyze	within	this	article,	teachers	did	not	readily	know	how	to	solve	an	inverse	

proportions	problem	using	pattern	blocks	or	the	area	model.		As	teachers	engaged	in	these	

types	of	activities,	first	working	together	in	small	groups	and	then	reconvening	in	a	large	

group	to	talk	about	ideas,	they	had	opportunities	to	develop	deeper	understandings	of	

different	concepts.	

In	the	next	section	we	analyze	parts	of	one	lesson	to	better	illustrate	when	and	

under	what	conditions	teachers	might	have	developed	new	mathematical	understandings.		
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The	Inverse	Proportion	Lesson	

During	this	part	of	the	lesson	the	participants	discussed	their	solutions	for	the	

following	problem:		If	nine	people	each	work	1.5	hours,	how	long	will	it	take	six	people	to	do	

this	same	work?		Teacher	S	had	previously	explained	that	six	people	would	need	to	do	more	

of	the	work	since	there	were	fewer	people	doing	the	work.		As	the	discussion	ensued,	

Teacher	C	(Tchr	C)	and	Instructor	1	(Instr	1)	discussed	how	Teacher	C	used	blue	rhombus	

and	green	triangle	pattern	block	shapes	to	solve	the	problem.		We	enter	the	discussion	as	

Teacher	C	explained	how	she	used	pattern	blocks.	

	

	

	

	

Figure	1.	Instructor	1	represents	Teacher	C’s	represent	of	the	man‐hours	problem.	
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Tchr	C:	 	 I	represented	it	with	a	rhombus	and	a	triangle?		So	you	have	an	hour	and	a	
half	an	hour.		So	you	represent	it	as	nine	times	with	a	blue	and	a	green…	

	
Instr	1:	 	 A	rhombus	and	a	triangle.		[begins	placing	blue	rhombi	and	green	triangles	to	

for	pairs	(see	Figure	1)].	
	
Tchr	C:	 	 And	I	represented	it	nine	times,	and	I	thought	that	would	show	all	of	the	time	

that	was	spent	[inaudible].	
	
	 As	Teacher	C	explained	how	she	used	the	blocks,	Instructor	1	began	making	

groups	of	blocks	to	represent	the	work	that	each	of	the	nine	people	completed.	As	they	

engaged	in	this	part	of	the	discussion,	teachers	had	the	opportunity	to	consider	how	one	

might	use	the	pattern	blocks	to	solve	this	problem.			

	 As	the	discussion	continued,	Teacher	C	explained	how	she	would	distribute	the	

blocks	to	show	the	work	that	six	people	needed	to	do:	

Tchr	C:	 	 For	me,	that	would	represent	all	of	the	time	that	it	took	to	do	the	job.	Then	I	
would	divide	that	up	into	six	piles	because	you	only	have	six	people.	It	is	still	
going	to	take	the	same	number	of	hours	to	do	the	job.		So	if	you	divide	that	
into	six	equal	piles	then	I	should	have	the	amount	of	time	that	it	would	take	
each	person.	

	
Instr	1:	 	 [To	all	the	teachers]	Well	how	would	I	divide	nine	big	things	and	nine	little	

things	into	six	equal	piles?	
	
Tchrs:	 	 [Laughter	and	people	talking	over	one	another.]		I	don’t	know.	
	
	 Notice	that	Teacher	C	made	several	comments	that	related	to	ideas	about	inverse	

proportions.	First	she	explained	that	the	nine	blue‐rhombus‐green‐triangle	pairs	(the	

number	of	people/hours	of	work)	represent	the	total	amount	of	work‐hours.		She	also	

mentioned	that	if	there	were	only	six	people	doing	the	work,	they	would	still	need	to	

complete	the	same	number	of	hours	of	work.		She	also	explained	how	she	would	need	to	

determine	the	number	of	man‐hours	for	six	people.		After	Teacher	C	explained	that	she	

divided	up	the	blocks	into	six	piles,	Instructor	1	asked	the	other	teachers	how	they	might	
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divide	the	pattern	blocks.		By	asking	all	the	teachers	this	question,	Instructor	1	invited	

others	to	engage	in	the	discussion.		As	he	did	so,	he	also	communicated	implicitly	that	

Teacher	C’s	method	was	a	viable	approach	for	solving	this	proportion	problem.		

Interestingly,	in	response	to	his	question,	notice	too,	that	teachers	talked	over	one	another	

and	some	indicated	that	they	did	not	know	how	they	could	divide	the	blocks	to	solve	the	

problem.			

	 It	is	at	this	point	that	Instructor	1	and	Teacher	C	talked	about	how	they	might	

redistribute	the	blocks	into	six	piles	to	solve	the	problem.				

Instr	1:	 	 Everyone	gets	a	green	thing….So	I	will	take	out	six	of	the	blue	…[removes	the	
6	rhombi]	trapezoids	and	those	correspond	to	people	working?			

	
Tchr	C:	 	 One	hour.	
	
Instr	1:	 	 One	hour.		And	then	I	can	take	out	the	six	of	the	triangles	that	correspond	to	

everyone	working	[removes	6	green	triangles]?	
	
Tchr	C:	 	 Half	an	hour.	
	
Instr	1:	 	 Half	an	hour.		That’s	what	they	were	doing	at	the	beginning	when	there	were	

nine	of	them.		That	is	how	much	work	they	had	to	do	[three	blue	rhombi	and	
three	green	triangles	still	presented	by	the	document	camera].	

	
Tchr	C:	 	 And	now	you	have	to	trade	some	blues	for	more	greens…so	that	you	can	split	

them	all.	
	
	 As	Instructor	1	began	distributing	the	six	pairs	of	blocks,	he	asked	what	each	block	

represented.		And,	each	time	he	asked	this	question,	Teacher	C	answered	his	question.		As	

she	did	so,	she	and	Instructor	1	continued	to	show	how	they	could	distribute	these	blocks	

into	six	equal	groups.		As	further	evidence,	after	distributing	the	six	rhombi,	Instructor	1	

also	explained	that	the	remaining	blocks	(three	rhombi	and	three	triangles)	were	part	of	

the	man‐hours	they	started	with.		Teacher	C,	for	her	part,	explained	that	they	also	needed	

to	trade	rhombi	for	triangles	so	they	could	share	all	the	blocks.		So	as	he	and	Teacher	C	
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explained	what	the	blocks	represented	at	each	pass,	they	illustrated	how	they	might	use	

the	blocks	to	solve	the	problem.			

	 Following	this	exchange,	Instructor	1	and	Teacher	C	continued	to	talk	about	how	

they	would	trade	blocks	and	distribute	the	remaining	three	piles	of	rhombus‐triangle	pairs	

equally	among	the	six	groups.		However,	they	did	not	find	the	actual	values	of	the	blocks	in	

each	of	the	six	piles.		At	first	we	were	puzzled	as	to	why	Instructor	1	and	Teacher	C	did	not	

actually	use	the	pattern	blocks	to	solve	the	problem.		Further,	it	was	very	uncharacteristic	

of	Instructor	1	to	explain	how	he	might	use	the	blocks	to	make	six	equal	groups.		Instructor	

1	usually	expected	teachers,	not	him,	to	explain	their	solution	methods.		So,	we	suspect	that	

he	never	planned	to	solve	this	problem	using	the	pattern	blocks.		Instead,	he	(and	Teacher	

C)	demonstrated	the	problem	in	order	to	help	teachers	see	one	possible	way	to	use	the	

pattern	blocks	to	reason	about	this	problem.			

Examining	the	Representation	

	 What	are	some	of	the	specialized	content	ideas	associated	with	using	pattern	

blocks	to	solve	this	problem?		Are	there	any	limitations	with	how	one	can	manipulate	

quantities	when	using	the	blocks?		First,	we	note	that	the	blue,	yellow,	red	and	green	

pattern	blocks	are	related	(1	yellow	=	6	greens,	1	blue	=	2	greens,	and	1	red	=	2	blues	or	3	

greens).		If	the	blue	rhombus	represents	1	hour,	then	the	green	triangle	represents	½	hour	

and	together	they	represent	1½	hours.		To	represent	the	work	of	nine	people,	one	could	

make	nine	rhombus‐triangle	pairs,	like	Instructor	1	and	Teacher	C	did	to	solve	the	problem.		

Trading	all	the	blue	rhombi	for	green	triangles,	gives	27	triangles.		Making	six	equal	piles	

(i.e.,	use	partitive	division)	yields	four	triangles	in	each	pile	with	three	leftover.		So	each	

person	works	2	hours	since	triangles	are	half‐hours	or	4	x	½		=	2.		Each	person	also	works	
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Inverse	Proportion	Lesson—Method	2	

	 Returning	to	the	lesson,	as	the	discussion	ensued,	Instructor	1	asked	Teacher	

Leader,	one	of	the	other	instructors,	to	explain	his	method	to	the	class.		Teacher	Leader	had	

used	an	area	model	instead	of	the	pattern	blocks	to	solve	the	problem.		So	as	the	discussion	

continued,	Teacher	Leader	came	to	the	front	of	the	room	and	explained	how	he	solved	the	

problem	using	the	area	model.	Teacher	Leader	explained	that	he	first	drew	a	9	x	1.5	

rectangle	to	represent	13½	man‐hours.		He	then	divided	the	rectangle	into	two	smaller	

rectangles	with	dimensions,	6	x	1.5	and	3	x	1.5	(see	Figure	2).		Then	he	split	the	3	x	1.5	

rectangle	to	make	two	3	x	0.75	rectangles.		And	he	placed	these	two	3	x	0.75	rectangles,	one	

on	top	of	the	other,	making	a	new	6	x	0.75	rectangle.		And	finally,	he	adjoined	this	new	

rectangle	with	the	6	x	1.5	rectangle	to	make	a	6	x	2.25	rectangle.			

	 As	the	discussion	continued,	Teacher	Leader	asked	the	teachers	if	they	understood	

how	he	had	solved	the	problem.		The	following	transcript	reenters	the	discussion	as	

Teacher	Leader	(Tchr	Lead)	asked	the	teachers	if	they	followed	his	approach.		

Tchr	Lead:	 …Does	everyone	follow	what	I	did?….But	when	I	split	this	rectangle	(3	x	1½	)	
in	half	what	is	this	value	right	here	[points	to	the	side	that	has	length	0.75]?	
[Draws	an	arrow	pointing	to	the	3	x	1½	piece	now	attached	to	the	6	x	1.5	
rectangle,	see	Figure	2].	

	
Tchr	X:	 0.75.	 	
	
Tchr	Lead:	 How	did	you	get	that?	
	
Tchr	X:	 Half	of	1.5.	
	
Tchr	Lead:	 Because	remember	that	is	what	I	did	with	that	area;	I	split	that	area	in	half	so	

it	is	0.75	[writes	.75	above	the	3	x	1.5	rectangle].		So	now	I	still	have	the	same	
amount	of	area,	the	same	amount	of	work	hours	[moves	his	hand	over	the	
rectangles]	that	need	to	be	done.		So	I	kind	of	have	to	figure	out	what	that	is	
over	here	so	I	have	1½	hours	and	¾	of	an	hour,	so	how	many	hours	would	
that	be?			
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Tchr	X:	 2.25.		
	
Tchr	Lead:	 So	the	men	worked	2.25	or	2¼	hours	[writes	these	two	answers	to	the	right	

of	the	new	diagram].			
	
As	Teacher	Leader	explained	his	strategy,	he	asked	the	teachers	if	they	understood	how	he	

solved	the	problem.		Teacher	X,	and	possibly	other	teachers,	seemed	to	understand	his	

method.		As	he	continued	to	explain	his	diagram,	notice	for	instance	that	Teacher	X	

provided	dimensions	of	the	smaller	and	larger	rectangles.		So	she	and	Teacher	Leader,	

together,	began	to	establish	this	second	method	for	solving	the	problem.					

Examining	the	Second	Representation	

Area	models	(continuous)	offer	certain	advantages	over	pattern	block	models	

(discrete)	when	representing	inversely	proportional	situations.	One	can	continue	to	

partition	area	models	into	smaller	and	smaller	rectangular	regions	and,	in	the	example	

above,	evenly	distribute	thes13½	man‐hours	to	each	of	the	six	people.		Unlike	when	using	

the	pattern	blocks,	one	can	actually	rearrange	these	smaller	partitioned	pieces.		One	can	

also	make	different	choices	for	how	to	partition	the	area.		As	in	our	example,	Teacher	

Leader	decomposed	the	rectangle	with	a	side	of	length	nine	units	into	to	smaller	rectangles	

with	lengths	of	six	and	three	units.		Additionally,	the	area	is	preserved	because	one	is	

simply	partitioning	the	given	rectangle	and	rearranging	the	different	parts	to	make	a	

rectangle	with	an	area	of	6n	square	units.			

To	summarize,	at	this	point	in	the	lesson,	both	instructors	have	illustrated	how	they	

(and	the	teachers)	might	use	two	types	of	models	to	represent	and	ultimately	solve	this	

problem.		Teacher	C	in	our	first	example	and	Teacher	X	in	our	second	example	played	

different	but	important	roles	in	substantiating	that	one	can	use	these	types	of	
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representations	to	reason	about	and	to	solve	proportional	problems.		The	instructors,	for	

their	part,	asked	clarifying	questions	and	highlighted	the	teachers’	explanations.			

Interestingly,	as	the	discussion	ensued,	teachers	continued	to	question	whether	

using	these	types	of	representations	were	useful.	Teacher	K,	for	instance,	voiced	her	

concern.			We	reenter	the	discussion	as	she	commented	on	Teacher	Leader’s	solution	

method.	

Tchr	K:	 	 I	think…trying	to	explain	it	[this	method]	with…		I	don’t	understand…	I’m	
more	confused	after	the	explanation.		I	mean,	I	know	how	to	get	the	answer.		
I	just	like…the	representation	of	it	is	really	hard	for	me,	for	this	particular	
problem.		I	can	explain	it.		I	just	think	that	my	students	don’t	understand	
what	I	am	explaining.		But	I	feel	like	if	I	show	that	or	the	other	example…they	
would	be…and	I	am	so	confused	by	it,	that	it	makes	it	more	difficult.	

	
Although	Teacher	K	understood	how	to	derive	the	answer,	she	did	not	understand	

how	Teacher	Leader	had	arrived	at	his	answer	using	this	representation.		Furthermore,	

she,	and	possibly	other	teachers,	did	not	see	the	relevance	of	using	this	type	of	

representation	with	her	students.		Teacher	Leader	and	Instructor	1	had	some	important	

decisions	to	make,	and	quickly,	as	to	how	to	address	Teacher	K’s	comments.	

We	reenter	the	discussion	as	Teacher	Leader	and	Instructor	1	respond	to	Teacher	

K’s	comments.	

Tchr	Lead:	 Are	there	other	people	that	feel	that	way?		[At	least	one	teacher	raises	her	
hand.]		Were	you	going	to	say	something?	

	
Tchr	S:	 	 No.		I’m	just	trying	to	figure	it	out.	
	
Tchr	G:	 	 In	my	mind,	that	worked	very	nicely	because	it	was	nine.		Because	you	have	

the	six	[inaudible]	and	all	that…it	could	have	been	five	people.		Would	it	work	
just	the	same?	

	
Tchr	Lead:	 Good	question.	
	
Instr	1:	 	 Let’s	try	it,	Teacher	Leader.	
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Notice,	in	response	to	Teacher	K’s	comment,	Teacher	Leader	asked	if	others	shared	

her	position.		In	so	doing,	he	communicated	to	Teacher	K	(and	the	other	teachers)	that	he	

acknowledged	and	valued	their	concerns.		Surprisingly,	other	teachers	did	not	voice	similar	

views.		This	is	not	to	say	that	they	did	not	have	similar	views.	They	simply	did	not	voice	

those	concerns	here.		Instead,	in	response	to	Teacher	Leader’s	question,	Teacher	S	and	

Teacher	G	commented	that	they	were	still	thinking	about	Teacher	Leader’s	solution	

method.		In	fact,	Teacher	G	asked	whether	or	not	this	strategy	would	work	for	other	

problems.		Notice,	too,	that	in	response	to	Teacher	G’s	question,	the	instructors	and	

teachers	then	explored	a	different	problem	that	was	inversely	proportional	to	the	original	

problem.	As	the	discussion	continued,	with	a	little	bit	of	calculating,	the	instructors	and	the	

teachers	used	a	similar	procedure	to	determine	that	it	would	take	five	people	2.7	(i.e.,	1½	+	

1	+	⅕)	hours	to	do	the	same	work.		

In	retrospect,	we	note	that	Teacher	K’s	comment	was	an	important	one.		Teacher	

Leader’s	subsequent	response	was	equally	important.		By	asking	other	teachers	to	respond	

to	Teacher	K’s	comment,	he	and	the	teachers	had	the	opportunity	to	explore	if	this	method	

worked	for	other	partitionings	of	the	same	rectangular	region—13½.		As	they	explored	

together	how	they	might	use	similar	methods	to	solve	an	alternate	problem,	they	

collectively	established	using	the	area	model	to	solve	these	types	of	problems.	

Mathematical	Knowledge	for	Teaching	

What	are	some	of	mathematical	ideas	needed	to	use	the	area	model	to	solve	inverse	

proportions?		When	one	partitions	a	rectangular	region	and	redistributes	the	area,	one	

conserves	the	area	of	the	original	region.		The	region	represents	the	total	number	of	work‐

hours,	and	the	dimensions	of	rectangular	region	represent	the	number	of	people	and	the	



  Whitenack & Ellington 

	

numbers	of	hours	each	person	works.		One	can	also	algebraically	justify	why	the	area	is	

conserved.	To	accomplish	this	task,	use	the	associative	and	distributive	properties	to	

generate	different,	equivalent	expressions	that	represent	different	rectangular	partitioned	

regions	that	sum	to	an	area	of	13½	square	units.		For	example,	9	x	1	½	=	(6	+	3)	x	1	½		=	(6	

x	1½)	+	(3	x	1½).		The	last	expression	represents	the	new	two	rectangular	regions	with	

dimensions	of	6	x	1½	and	3	x	1½.		One	can	as	apply	the	distributive	property	again	to	

create	another	equivalent	expression:		3	x	1½	=	[3	x	(¾+	¾)]	=	(3	x	¾)	+	(3	x	¾)	=	3	x	2	x	¾	

=		(3	x	2)	x	¾	=	6	x	¾.		This	last	expression	represents	the	new	rectangular	region	that	is	

adjoined	with	6	x	1½.		So	the	final	string	of	equivalent	expressions	is:		9	x	1½	=	(6	+	3)	x	

1½		=	(6	x	1½)	+	(3	x	1½)		=	(6	x	1½)	+	[3	x	(0.75	+	¾)]	=	(6	x	1½)	+	(3	x	2	x	¾)	=	(6	x	1½)	

+	(6	x	¾)	=	(6	x	2¼)	=	13.5.		By	creating	this	string	of	equivalent	expressions,	we	have	also	

shown	that	the	products	of	the	values	for	each	ratio	are	equivalent.		Put	another	way,	we	

have	shown	that	the	dimensions	of	these	rectangular	regions	are	inversely	proportional	

since	they	have	the	same	product.		For	the	sake	of	brevity,	we	leave	it	to	the	reader	to	

explore	how	they	might	partition	this	same	rectangular	region	to	show	9	x	1½	=	5	x	(1½	+	

1	+	⅕).	(Hint:	As	one	approach,	first	find	the	area	for	5	x	1½	and	4	x	1½.	Then	somehow	

redistribute	this	area	for	4	x	1½	to	make	a	5	x	1⅕	rectangle.)		Finally,	it	is	interesting	to	

consider	that	there	are	numerous,	even	infinite	numbers	of	ways	to	generate	rectangular	

regions	with	an	area	of	13½	square	units.	

Let	us	now	return	to	the	ensuing	discussion.	Interestingly,	after	participants	solved	

Teacher	G’s	problem,	the	discussion	returned	to	exploring	how	one	might	use	pattern	

blocks	to	solve	the	inverse	proportion	problem.		One	of	the	teachers,	Teacher	M,	initiated	

this	shift	in	the	discussion.		Without	prompting,	she	asked	if	she	could	show	how	she	solved	
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the	problem	using	the	pattern	blocks.		We	reenter	the	discussion	as	Teacher	M	came	to	the	

front	of	the	room	and	explained	her	thinking	by	sharing	her	work	using	the	document	

camera.	

	

	

	

Figure	3.	Teacher	M	shows	how	she	used	pattern	blocks	to	solve	the	9	x	1	½		man‐hours	

problem.	

	

	

	

	

	

	

Figure	4.	Teacher	M	trades	3	rhombi	for	6	green	triangles.	
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Tchr	M:	 	 So,	the	three	yellows	[hexagon	pattern	blocks]	were	the	whole.		So	there	is	
the	work	that	nine	people	did	but	we	only	have	six	people,	so	we	have	this	
much	[removing	three	blue	rhombi	from	one	yellow	hexagon	but	puts	them	
back]…oh,	and	since	it	is	an	hour	and	a	half	each	of	these	little	blues	are	an	
hour	and	a	half,	but	we	had	six	people	so	we	have	this	much	work	left	to	do	
[removes	six	blue	rhombi	from	two	yellow	hexagons	and	points	to	the	yellow	
hexagon,	see	Figure	3]	so	if	I	split	that	amongst	six	people	[puts	six	green	
triangles	on	the	yellow	hexagon,	see	Figure	4].		Then	I	can	see	that	one	blue	is	
the	same	as	two	greens.		So,	these	are	each	an	hour	and	a	half	[pointing	at	
blue	rhombi]	so	each	person	works	an	hour	and	a	half,	and	also	a	green	
which	is	half	of	an	hour	and	a	half	or…	

	
Instr	1:	 	 Forty‐five	minutes.	
	
Tchr	M:	 	 Yeah…forty‐five	minutes.		So	then	you	can	see,	this	is	the	same	idea,	they	

each	work	an	hour	and	a	half	plus	forty‐five	minutes,	but	less	changing	[than	
Teacher	C’s	method]	because	I	started	with	a	whole.		The	whole	was	the	
three	yellows,	was	all	the	work.		Does	that	make	sense?	

	
Instr	1:	 	 Very	nice.		Does	everyone	understand	what	she	just	did?		I	think	this	is	an	

illustration	where	one	would	get	it	right…the	pattern	blocks	show	us	
something,	right?		This	solution	is	one	that	we	and	some	children	could	
understand.		These	pattern	blocks	aren’t	going	to	work	with	Teacher	G’s	
modified	problem…as	well.		I	mean,	you	can	start	off	the	same	[relates	
problems	by	talking	about	pieces]…Okay.		I	like	this.		I	would	like	to	comment	
that	this	is	also	an	example	of	something	where	we	started	off	relatively	
confused	with	the	pieces	and	when	we	ended	up,	we	had	a	nice	solution—a	
nice	visual	solution,	medium	[that]	our	students	can	understand.	

	
	 It	is	interesting	that	Teacher	M	asked	if	she	could	show	her	solution	method	using	

pattern	blocks.	Initially,	she	had	struggled	with	using	the	blocks.	Apparently,	she	continued	

to	think	about	the	problem	as	the	discussion	ensued.	She,	in	fact,	explained	in	some	detail	

why	she	used	different	blocks	to	solve	the	problem.		By	using	this	approach,	she	only	

needed	to	trade	six	triangles	for	three	blue	rhombi.	She	would	still	need	to	do	some	

computing	to	determine	what	part	of	one	hour	the	green	triangles	represented,	but	aside	

from	this	issue,	her	method,	from	her	point	of	view,	was	more	efficient—“less	changing”	or	

trading.		She	only	needed	to	change	out	three	rhombi	for	six	green	triangles	before	she	

combined	one	triangle	with	each	of	the	blue	rhombi	to	make	six	equal	piles.		Additionally,	
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notice	how	Instructor	1	instantiated	her	ideas.		He	actually	commented	that	her	method	

was	nice.		He	also	mentioned	that	Teacher	M’s	approach	illustrated	how	one	might	use	the	

pattern	blocks	to	solve	this	problem.		In	fact,	he	suggested	this	was	a	strategy	that	students	

could	understand.		In	so	doing,	he	and	Teacher	M,	continued	to	establish	that	using	the	

pattern	blocks	to	reason	about	inverse	proportions	was	reasonable.		

Mathematical	Knowledge	for	Teaching:	Comparing	Solutions	

	 Are	Teacher	C’s	and	Teacher	M’s	solution	methods	mathematically	different?		

Recall	in	the	first	example,	Teacher	C	used	the	triangle	to	represent	a	½	hour,	so	the	blue	

rhombus	represented	one	hour	of	work.		Each	rhombus‐triangle	pair	represented	the	work	

that	one	person	completed.	And	the	nine	pairs	represented	the	work	that	nine	people	

completed	for	a	total	of	13½	man‐hours.		Teacher	M	used	a	different	unit	to	show	the	

number	of	hours	each	person	worked	as	well	as	the	total	number	of	man‐hours.		So	these	

two	methods	are	different.		Teacher	C	used	the	rhombus‐triangle	pair	to	represent	the	

work	of	one	person	whereas	Teacher	M	used	only	the	rhombus	for	the	same	purpose.		In	

other	words,	they	represented	to	whole	differently.			

	 Interestingly	Teacher	M’s	approach	seemed	less	cumbersome.		Why?		Teacher	M	

and	Teacher	C	may	have	thought	about	the	relationships	among	the	blocks	differently.		

Teacher	M,	for	instance,	first	represented	the	total	number	of	man‐hours	(3	hexagons	=	9	

blue	rhombi—1	hexagon	represented	the	work	that	three	people	can	do	in	1	½	hours).		

Once	she	had	the	nine	pieces	she	only	needed	to	trade	six	green	triangles	for	the	three	

rhombi	and	then	redistribute	these	pieces.		As	a	consequence	of	using	the	relationships	

among	the	blocks	so	that	they	better	fit	the	problem	situation,	she	was	able	to	more	

efficiently	solve	the	problem.		By	way	of	contrast,	Teacher	C	represented	the	hours	each	
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person	worked	with	one	blue	rhombus	and	one	green	triangle.		So,	she	needed	to	trade	

blue	rhombi	for	green	triangles	to	redistribute	the	blocks.	

	 At	the	close	of	this	discussion,	the	instructors	and	teachers	have	contributed	in	

part	to	constituting	that	both	of	these	solution	methods	are	reasonable—they	can	use	

pattern	blocks	or	the	area	model	to	solve	these	types	of	problems.		Initially	using	the	

pattern	blocks	to	derive	the	solution	did	not	seem	viable	to	the	participants.		Recall	that	

during	the	first	part	of	the	discussion,	for	instance,	Teacher	C	and	Instructor	1	did	not	

actually	solve	the	problem	using	the	blocks.		By	the	end	of	this	conversation,	when	Teacher	

M	illustrated	how	she	could	use	this	method,	they	now	had	established	that	using	the	

pattern	blocks	was	a	viable	approach.		Of	course,	Teacher	C’s	method	was	equally	viable,	

but	because	they	did	not	actually	solve	the	problem,	teachers	may	not	have	been	convinced	

at	the	beginning	of	the	lesson.	

Final	Comments	

	 At	the	close	of	this	discussion,	the	instructors	and	teachers	began	to	collectively	

establish	that	these	approaches	were	normative,	reasonable	ways	to	solve	inverse	

proportion	problems.		Providing	opportunities	for	middle	school	teachers	to	make	changes	

in	their	views	about	using	multiple	representations,	is	a	first	and	important	step	in	

supporting	their	professional	learning	about	teaching	mathematics	and	supporting	

teachers’	learning.		Participants	played	different	parts	in	advancing	discussions.		For	

instance,	Teacher	M	and	Teacher	C,	along	with	Instructor	1,	illustrated	how	one	might	use	

pattern	blocks	to	solve	tasks.		Also,	Teacher	G’s	comment	was	particularly	important	in	

helping	teachers	consider	how	they	might	solve	similar	problems	using	Teacher	Leader’s	

approach.		Additionally,	Teacher	K’s	comment	about	Teacher	Leader’s	approach	was	
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important.		Although	she	may	have	challenged	the	idea	of	using	these	types	of	approaches,	

her	concerns,	although	acknowledged,	seemed	to	fade	into	the	background	temporarily	as	

participants,	following	Teacher	G’s	question,	continued	to	explore	how	to	use	the	area	

model	to	solve	a	similar	problem.		

	 Our	goal	is	to	better	understand	why	teachers	made	the	progress	that	they	did	by	

the	end	of	the	Rational	Numbers	and	Proportional	Reasoning	course.		The	pretest‐posttest	

assessment	taken	by	all	participants	in	the	institute	revealed	that	all	the	teachers	better	

understood	the	content	at	the	end	of	the	course	but	the	assessment	does	not	help	us	

understand	how	and	why	the	changes	were	made.		Teachers	demonstrated	that	they	knew	

how	to	solve	problems	using	more	traditional	paper	and	pencil	methods.		However,	if	they	

had	engaged	in	more	traditional	types	of	activities,	they	would	have	had	fewer	

opportunities	to	explore	why	those	procedures	work.		And	more	importantly,	they	may	not	

have	understood	the	important	mathematical	ideas	that	underpin	those	ideas.		Situations	

such	as	the	ones	we	illustrated	in	this	lesson,	provided	teachers	with	opportunities	to	

explore	these	ideas	more	deeply.		As	teachers	represented	and	solved	problems	using	

manipulatives,	pictures	and	diagrams—approaches	that	were	fairly	novel	for	them—they	

had	opportunities	to	explore	the	different	ideas	and	concepts.		

	 We	suspect	that	other	teachers	may	ask	similar	questions	as	they	move	through	

other	courses	in	the	mathematics	specialist	program.		Teachers	had	concerns	about	how	

they	might	support	their	students’	learning	using	similar	instructional	practices.		As	they	

continue	in	the	program,	it	will	be	important	for	them	to	have	opportunities	to	address	

these	and	other	issues	around	teaching	and	mathematics.		In	this	particular	lesson,	there	

are	other	questions	that	might	arise	naturally.		For	instance,	does	using	the	area	model	
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afford	teachers	more	opportunities	to	explore	proportional	relationships	with	students?		

We	could	imagine	that	this	issue	might	arise	naturally	as	teachers	continued	to	routinely	

use	these	types	of	models	to	reason	with	and	about	proportions.		As	such,	teachers	might	

explore	and	possibly	expand	their	understanding	of	the	important	mathematical	ideas	

associated	with	these	types	of	proportional	activities.		As	they	do	so,	they	may	revise	their	

views	about	teaching	mathematics	for	understanding.		It	is	critical	for	teachers	to	develop	

these	and	many	other	strategies	in	order	to	be	effective	mathematics	specialists	in	their	

school	buildings.				
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