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Abstract 
This descriptive case study describes leadership skills and planning for setting clear directions by 

program leaders for a statewide professional development initiative to extend improvement in science 
teaching and learning.  For science teachers and leaders in Virginia, a critical part of setting clear goals 
that everyone can understand is defining key science terms.  One of the four key terms, “hands-on 
science,” is defined here.  Materials to develop teachers’ understanding of the term for effective 
implementation of classroom inquiry activities are shared, along with a rubric for evaluation by and for 
teachers.  Understanding of the term “hands-on science” is necessary before inquiry-based science 
teaching can be fully implemented.  Authentic science materials, when safe, are necessary for doing 
authentic, inquiry-based science teaching in a way similar to how a scientist investigates science. 

 

Leadership 
Science education reform in the United States is dynamic and messy, as educators 

grapple with emerging challenges and demands.  Leadership matters at all levels whether local, 
state, or national.  Leaders in science education reform provide clear directions, are data driven, 
and influence policy and effective practice in science education.  Their contributions are crucial 
to initiatives aimed at improving student learning and future workforce development [1]. 

 
Effective education leadership makes a difference in improving teacher and student 

learning.  What is less clear is how leadership matters, what the essential ingredients of successful 
leadership are, and how to promote the learning of all students.  Greater attention and investment 
in effective leadership is a pathway sought by many for large-scale education improvement.  How 
do high-quality leaders achieve this impact?  According to research, they use the following 
methods: 

• Set directions – chart a clear course that everyone understands; 
• Establish high expectations – use data to track progress and performance; and,  
• Develop people – provide teachers and others with the necessary support and training to 

succeed [2]. 
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Leaders are able to influence teaching and learning through the contributions they make 
to positive feelings of efficacy.  According to Bandura, one’s belief in one’s self and others 
determines the likelihood of setting a direction and achieving a goal.  Self-efficacy is belief in 
one’s own ability, whereas collective efficacy is belief in one’s colleagues to perform a task or 
achieve a goal. Strong efficacy beliefs are key to leaders’ ability to get things done [3].  They 
affect the choices leaders make and they affect coping efforts [4, 5].  The stronger the feeling of 
collective and self-efficacy is, the greater the persistence for a goal.  The sense of collective 
efficacy for leaders at all levels, whether teachers, principals, science coordinators, or 
superintendents, is central to undertaking and persisting in school improvement for teaching and 
learning [6]. 

 
The report, The Three Essentials: Improving Schools Requires District Vision, District 

and State Support, and Principal Leadership, identified three critical aspects of leadership for 
school improvement based on a study by the Southern Regional Education Board of seven very 
different school districts [7].  They found that states and school districts must develop and 
communicate a clear coherent vision and a collaborative framework of support in order for 
school improvement to become a reality.  In addition, they found that the most significant 
change was the mindset of district staff which includes holding themselves responsible for 
results.   

 
If teachers and leaders are going to hold themselves responsible for results, they need to 

develop an understanding of what the results will look like, thus the necessity of defining 
relevant terms.  According to the National Assessment for Educational Progress report released 
in June 2012, students doing hands-on projects in class score higher more frequently on student 
assessment tests, with students doing hands-on science almost every day scoring the highest [8].  
Thus, if we want our students to score well on achievement tests, there is a need to understand 
the term “hands-on.”    

 
Two publications from the National Science Teachers Association (NSTA), Position 

Statement:  Leadership in Science Education and Position Statement:  National Science 
Education Standards, support the importance of leadership with a clear coherent vision of 
effective science teaching and learning and a collaborative plan for reform [9, 10].  The NSTA 
Position Statements also focus on the following:  the importance of sustained professional 
development for teachers and leaders; the alignment of curriculum, instruction, and assessment; 
and, data-driven decision making.  Effective professional development expands knowledge of 
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content and pedagogical content, challenges the beliefs of teachers and leaders, and is 
transformative over time [11].  For sustained professional development impact, Horizon 
Research found in their study, Lessons from a Decade of Mathematics and Science Reform:  A 
Capstone Report for the Local Systemic Change through Teacher Enhancement Initiative, that 
long-term sustained effort and support by district and local leaders is essential when 
implementing new instructional strategies and materials [12]. 

 
VISTA Program Description 
 The Virginia Initiative for Science Teaching and Achievement (VISTA) is a partnership 
among sixty-five school districts, six universities, and the Virginia Department of Education to 
build an infrastructure to provide sustained, intensive science teacher professional development to 
increase student achievement.  The goal of VISTA is to improve science teaching and student 
learning, especially in high-need (high-poverty, high-minority) schools, as well as for limited 
English proficient students, rural students, and students with disabilities.   

 
Through a validation study of previous targeted efforts, the programs are being extended 

across multiple school divisions.  The initiative is funded by the United States Department of 
Education through the Investing in Innovation (i3) program, part of the American Recovery and 
Reinvestment Act.  In conjunction with validating prior program research efforts, the grant-
funded project has been designed to build leadership and shape policy, and practice through four 
intensive professional development programs:  1) upper elementary teachers (grades 4-6) receive 
professional development for one year in problem-based learning (PBL) science instruction, 
working in teams as they plan and teach PBL lessons; 2) first- or second-year secondary science 
teachers (grades 6-12) are provided just-in-time coaching and “big picture,” research-based 
science teaching coursework for two years; 3) school district science coordinators focus on 
strategic planning for effective science teaching, data-driven decision making, and leadership; 
and, 4) university science education faculty members investigate new science teaching, and 
learning research and reform practices.  
 
Research Questions 
 All four professional development programs require a common vocabulary.  This study 
investigated the following questions:  1) What key words need to be defined?  2) What are the 
definitions of these words?  3) What learning materials help participants grapple with the 
meaning of these words?  4) What rubrics are helpful for assessment of implementation?  This 
article focuses on “hands-on science,” the first of the four terms introduced.   
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Methods 

This descriptive case study describes how defining a critical term, “hands-on science,” 
aided in developing a clear, common understanding by all constituencies across the 
Commonwealth of Virginia.  The overall purpose of defining key science teaching pedagogy is to 
support the statewide infrastructure necessary to bring improvement to classroom instruction and 
student achievement. 
 
Methods—Participants 

This study chronicles the experiences of multiple participants at three stages of designing 
and testing definitions.  Participants included the principal investigator (Caucasian, female), nine 
VISTA staff members from three universities (8 Caucasian, 1 African-American; 8 female, 1 
male), thirteen school division science coordinators (8 Caucasian, 2 African-American, 1 Asian, 2 
unknown; 10 female, 3 male), and eight science education university faculty (6 Caucasian, 2 
African-American; 4 female, 4 male) from seven other universities for a total of ten universities.  
This article is based on the perspectives of the program implementers regarding challenges they 
encountered for the overall program as it was being created and implemented at the three program 
delivery sites for validation purposes. 

 
Methods—Research Design  

From the pilot studies, the researchers knew that common science pedagogical terms such 
as “hands-on” were used in different ways.  Therefore, they were aware that definitions needed to 
be established for the program to successfully expand throughout Virginia.  The researchers 
collected qualitative data concurrently from key program implementers throughout the 
Commonwealth as the program was initially being created and implemented.   

 
Data collection consisted of participants’ responses to surveys, observations, interviews, 

focus/working groups, and reflections.  The surveys contained open-ended items and were 
administered pre-/post-professional development.  The surveys were designed to elicit 
participants’ perceptions of the effectiveness of the professional development and key objectives 
of the professional development regarding four pedagogical terms:  hands-on science, inquiry, 
problem-based learning (PBL), and nature of science (NOS) instruction.  Validity for the 
definitions and training materials developed was supported by review by a panel of experts with 
backgrounds in science education and research evaluation.  The panel’s revisions were 
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incorporated into the final version of the instrument, a process which resulted in consensus on the 
face and content validity of the instruments.  

 
Methods—Data Analysis 

Qualitative data were analyzed using the constant comparative process of grounded 
theory [13, 14].  Grounded theory drove the determination of themes/categories.  A comparison 
of themes occurred, which allowed preliminary answers to the study questions [15].  Analyses 
were reviewed by the research team in order to reach consensus.   
 
Results—Four Science Teaching Definitions 
 An emergent theme was the discovery that teachers had multiple meanings for the same 
pedagogical phrase.  In order to clarify the goals of VISTA and establish a common language and 
unity across the Commonwealth, four key phrases were identified and defined:  hands-on science, 
inquiry-based teaching, problem-based learning (PBL), and nature of science (NOS).  Only 
“hands-on science” will be defined in this article, including the process used to develop the 
definitions, the materials used with the teachers to establish common understanding, and the 
assessment materials to gauge progress. 
 
Results—The Definition and Acceptance 
 The definition for hands-on science is, “Students purposefully manipulating real science 
materials when safe and appropriate in a way similar to a scientist.”  The definition has the 
following five parts: 

1) students  
2) purposefully manipulating  
3) real science materials  
4) when safe and appropriate  
5) in a way similar to a scientist.  

 
 
The definition was developed over time in a three-step refinement process: 

1) The initial definition of hands-on science was developed and refined by the author and 
used over approximately five years in her science methods courses for pre-service 
teachers and science leadership courses for in-service teachers. 

2) Before adopting this and the other definitions, the definitions were reviewed and 
discussed with nine VISTA leaders at the six universities participating in VISTA.  The 



84 D. STERLING 

hands-on science definition was not changed by the VISTA leadership, whereas the other 
definitions were expanded. 

3) Lastly, the definitions were reviewed by eight additional university science education 
faculty and thirteen school division science coordinators from across Virginia who were 
participating in the VISTA leadership academies.  At this point, the word “purposefully” 
was added to the definition. 

 
Results—Clarifying Examples and Non-Examples 
 Before clarifying examples were discussed during professional development, the teachers 
or leaders were asked:  What percentage of time should be spent by students doing hands-on 
science?  After thinking individually, the participants discussed this in small groups of four, and 
then shared with the whole group.  Subsequently, the initial NSTA recommendation that students 
should be engaged in hands-on learning at least 50% of the time was shared.  Now, NSTA is 
moving toward describing more what the laboratory investigations should look like on a weekly 
basis than a particular percentage of time.  However, NSTA explicitly states that middle school 
teachers should “engage students in laboratory investigations a minimum of 80% of the science 
instruction time” [16].     

 To refine the teachers’ understanding of hands-on science, we found it is necessary for 
them to classify a series of examples and non-examples of hands-on science.  To describe the 
progression of examples, we use a PowerPoint presentation with pictures (see Table 1).  For each 
example, the teachers are asked to evaluate and defend their answer to the question:  Is this 
hands-on science?  They do this analysis (see Figures 1 and 2) individually, and then discuss in a 
small group before sharing with the whole class.  Lastly, when teachers have trouble giving up 
their favorite activities when they don’t meet the definition of hands-on science, we come back to 
the NSTA recommendation which is that less than 100% needs to be hands-on science.  This 
allows them to do their favorite activity, but not count it as hands-on science.   

Table 1 
Is This Hands-on Science? 

Example Analysis Hands-on 
Science 

Using silk flowers to study 
plants 

Not real science materials.  
Not in a way similar to a scientist.  

No 

Using paper models to 
represent the parts of a cell, 
the layers of the earth, DNA, 

Not real science materials.  
Not in a way similar to a scientist.  

No 
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etc. 
Using a computer simulated 
pendulum lab 

Not real science materials.  
A string and a mass is easy to obtain and 

use. 
Students remember what makes a 

difference with real materials, not 
on computer. 

Not in a way similar to a scientist.  

No 

Using a computer to analyze 
images of celestial objects 

Real computer images of planets are real 
science materials.  
Scientists study planets using real pictures, 
since they can’t go there. 

Yes 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Presentation slide showing an example of hands-on science. 

 

Is This Hands-on Science?

• Evaluate and defend
• Using a computer to analyze images of 

celestial objects
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Planets

• Students purposely manipulating real 
science materials when safe and 
appropriate in a way similar to a scientist. 
• Real computer images of planets are real 

science materials. 
• Scientists study planets using real pictures, 

since they cannot go there.

• Therefore hands-on science.

 

Figure 2.  Presentation slide showing explanation for computer planet example. 

 

Hands-on Science Demonstration 
 The apple lab strongly makes the point that using real science materials when they are 
available helps the students learn more.  In this lab, participants observe three images/models of 
an apple, and then compare what they can observe from each image.  First, the participants are 
given a picture of a real red apple and asked to write down everything they can observe about it 
(see Figure 3).  Second, the participants are given a realistic model of a red apple and asked to 
write down everything they can observe about the apple.  Third, the participants are given a real 
red apple and a plastic knife, and asked to write down everything they can observe about the 
apple.  Each time, the list of observations gets longer (see Table 2).  The lab is concluded by 
having a discussion about which form of the apple provided the most information.  The 
participants should easily recognize that their lists were longer as they progressed from the 
picture, to the model, to the real apple and therefore, their lists were more detailed for the real 
apple.  Thus, the teachers conclude that students should use real science materials as much as 
possible because the amount of learning is significantly greater.  
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Figure 3.  Picture of a real red apple. 

 
Table 2 

Observations of Three Different Depictions of an Apple 
Apple Observations 

Picture of a real red 
apple 

Red 
Round 
One brown long thing sticking out 

Model of a real red 
apple 

All above plus: 
Sphere 
Red all over  
One brown toothpick-like long thing sticking out about 2 cm 
Balances on one side (bottom) 

A real red apple All above plus: 
Red all over with slight red variations 
Light colored yellowish dots all over the outside skin 
Brown stem 
Smells sweet 
White inside 
Tastes sweet 
Juicy 
Small dark seeds in the middle 
Clear hard flexible pieces surrounding seeds 

 



88 D. STERLING 

As needed during the apple observation activity, the difference between an observation 
and an inference is discussed.  It is typical for students to make inferences for which they have no 
direct observations.  For example, you can’t observe the apple is white inside until you have the 
real apple and cut into it.  In the picture or model, it is an inference that it is white inside, not an 
observation.   
 

Assessing Instruction 
 A rubric was developed to assess a teacher’s implementation of hands-on science in 
teaching (see Table 3).  The rubric was designed to assess the five parts of the definition.  
Initially, the rubric was used by a teacher to assess another teacher’s lesson for hands-on science 
teaching.  This approach helped the teacher become more familiar and proficient about the 
nuances of each aspect of the rubric.  Then, the rubric was used by other program participants on 
each other.  This way, the teachers each grew in their proficiency of interpreting each aspect of 
the definition of hands-on science.  A unique aspect of using the rubric was for the teacher to use 
the rubric on others before it was used on them.  This enabled them to use their growing 
understanding of hands-on science before they designed a hands-on lesson that was critiqued by 
others using the rubric.   

Table 3 
Hands-on Science Rubric 

Hands-on 

Students purposefully manipulating real science materials when safe and appropriate in a way 
similar to a scientist. 

 
Students 
are… 

 
Not 

Observed 

 
Rarely 

Observed 

 
Occasionally 

Observed 

 
Often 

Observed 

 
Consistently 

Observed 

 
Evidence 

…conducting 
the activity. 

 
0 

 
1 

 
2 

 
3 

 
4 

 

…purposefully 
manipulating 
materials. 

 
0 

 
1 

 
2 

 
3 

 
4 

 

…using real 
science 
materials. 

 

0 

 

1 

 

2 

 

3 

 

4 
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…using 
materials in 
a safe & 
appropriate 
manner. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

…working in a 
way similar 
to a 
scientist. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

 
 
Discussion 

Leaders are most effective when working collaboratively toward clear, common goals.  It 
takes leadership skills and planning to build a common language for all participants in a teaching 
reform program.  Identifying and defining key terms is a crucial, but messy process as consensus 
is built across the developing learning communities and program.  This article outlines a key 
term, “hands-on science,” needed in one statewide program in Virginia for the improvement of 
science teaching and student learning.  This article shares the definition, the definition 
development process, the teaching materials created to develop understanding, and the 
assessment of actual classroom practice.  Expectations and accountability measures emerged as 
key leadership foci.   

 
The school division science coordinators and university science education faculty who 

participated in the above hands-on science activities as learners not only felt that they developed a 
deeper and consensus understanding of the term themselves, but that they were also able to use 
the activities with their pre-service or in-service teachers to develop these teachers’ 
understanding.  In addition, the science coordinators and faculty indicated that they had used the 
definition and activities for creating a new vision of effective science teaching and for strategic 
planning.  Setting clear expectations and common understanding leads to clearly focused goals 
for the program and appear to be linked to higher student achievement.   

 
Our findings are consistent with the research on the importance of leadership for setting 

directions and expectations, and developing teachers’ skills as cited earlier [2, 9, 10].  In general, 
leaders found that instructionally helpful leadership practices:  focused on clear school teaching 
goals; provided professional development for teachers and leaders aimed at understanding the 
goals; and, created structures and opportunities for teachers and leaders to collaborate to meet the 
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goals.  Clearly defining five parts of the definition for hands-on science clarified important 
nuances, such as real science materials and using them in a way similar to a scientist.   Following 
this with examples and non-examples focused the teachers and leaders on essential aspects of the 
definition and provided a platform to discuss and defend explanations, thus building greater 
understanding.  Since implementing effective science teaching in the classroom was a program 
goal, clearly defining materials to use for learning focused teachers on critical aspects of actually 
implementing inquiry-based teaching and problem-based learning.   
 
Implications for Policy and Practice 

Two implications for policy and practice emerged for leaders from the development of 
definitions in our study: 

 
1) Program and district leaders need to establish clear expectations across multiple 

dimensions of improvement activities as the bases for increasing coherence, 
coordination, and synergy in the effectiveness of statewide and district improvement 
efforts over time; and,  

2) Program and district leaders should combine a common core of communications and 
support for efforts to implement district expectations with differentiated support 
aligned to the needs of individuals and programs. 

 
By developing differentiated support for using an explicit definition for hands-on science, 
program and district leaders, as well as teachers, established a common language for expressing 
what hands-on science is and is not across the program which increased program coherence and 
synergy for students to meaningfully investigate science.   
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